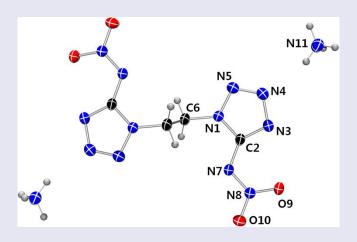
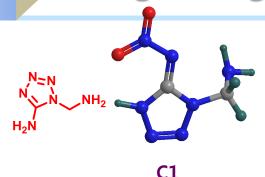
Synthesis, characterization and formulation of Diammonium ethylene bis(5-nitroiminotetrazolate)


Eun Mee Goh, Soo Gyeong Cho, Young-Hyuk Joo[†]

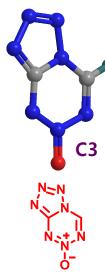
Agency for Defense Development, Daejeon, 305-600 † Hanwha Corporation R&D Center

2013. 10. 9


Overview

- High Nitrogen explosives
- **❖** Tetrazole derivatives
- Nitroiminotetrazole
- Enhanced Synthesis method
- Characterization of EBNIT
- **❖** Synthesis of Salt-EBNIT
- Characterization of Salt-EBNIT
- **Summary**

High Nitrogen explosives


High Nitrogen explosives, Tetrazole derivatives

 ΔH_f° = 46.1 kcal mol⁻¹ d = 1.635 g cm⁻¹ (1.960) Impact Sensitivity = 16.2 J P = 22.73 GPa (27.77) D = 7948 m s-1 (8487) Oxygen Balance = -45.3% N Content = 61.6%

N_N N_N N_N N_N ΔH_f° = 151.6 kcal mol⁻¹ d = 1.859 g cm⁻¹ (1.847) Impact Sensitivity = 5.4 J P = 38.47 GPa (37.75) D = 9323 m s-1 (9277) Oxygen Balance = -58.5% N Content = 79.7%

 ΔH_f° = 168.9 kcal mol⁻¹ d = 1.918 g cm⁻¹ (1.905) Impact Sensitivity = 3.5 J P = 40.82 GPa (40.07) D = 9306 m s-1 (9262) Oxygen Balance = -40.3% N Content = 70.5%

TNT

 ΔH_f° = -15.1 kcal mol⁻¹ d = 1.654 g cm⁻¹ Impact Sensitivity = 40.0 J P = 21.00 GPa D = 6930 m s-1 Oxygen Balance = -74.0% N Content = 18.5%

RDX

ΔH_f°= 16.5 kcal mol⁻¹ d = 1.806 g cm⁻¹ Impact Sensitivity = 6.5 J P = 33.80 GPa D = 8700 m s-1 Oxygen Balance = -21.6% N Content = 37.8%

HMX

ΔH_f°= 17.9 kcal mol⁻¹ d = 1.905 g cm⁻¹ Impact Sensitivity = 7.3 J P = 39.40 GPa D = 9110 m s-1 Oxygen Balance = -21.6% N Content = 37.8%

Nitroiminotetrazole

$$NH_2$$
 $N=N$
 $N=N$


Explosives		Density [g cm ⁻³]	<i>P</i> [GPa]	<i>D</i> [m s ⁻¹]	IS [J]
	TNT	1.65	19.5	6881	15
	RDX	1.82	35.2	8977	7.4
	NIT	1.87	36.3	9173	1.5
	mNIT	1.76	29.5	8433	3

O ₂ N _N	O ₂ N N
HN NH N=N	HN [™] N-CH ₃
NIT	mNIT
$\Delta H_{\rm f}$ = 264 kJ/mol d = 1.87 g/cm ³	$\Delta H_{\rm f} = 260 \text{ kJ/mol}$ d = 1.76 g/cm ³
IS = 1.5 J FS = 8 N	IS = 3 J FS = 145 N

metal complex
(primary explosives)
or
energetic salts
(secondary explosives)

Klapötke, T. M.; Stierstorfer, J. Helv. Chim. Acta 2007, 90, 2132-2150.

Bridged Tetrazole derivatives synthesis

Old Synthesis method (Bistetrazole)

$$H_{2}N \xrightarrow{NH_{2}} \frac{\text{(Highly toxic!)}}{N_{3}-CN} \xrightarrow{N=N} N \xrightarrow{N=N} N \xrightarrow{N=N} N \xrightarrow{N} N \longrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \longrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \longrightarrow{N} N \longrightarrow{N} N \longrightarrow{N} N \longrightarrow$$

Joo, Y. -H.; Shreeve, J. M. Angew. Chem. Int Ed. 2009, 48, 564

Synthesis method of small scale in Lab.

Synthesis method of scale up in Lab.

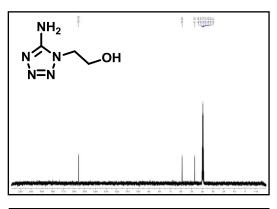
Scale up Synthesis in Lab.

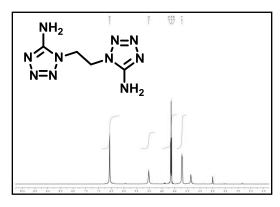
Scale up Synthesis in Lab.

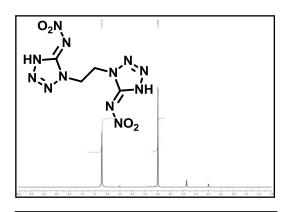
EBAT 50g synthesis

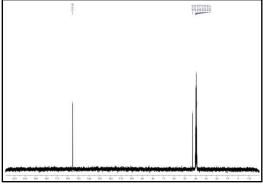
EBAT scale up research

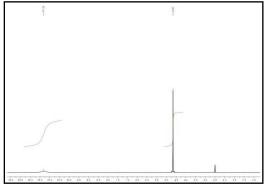
EBAT hot filtration process

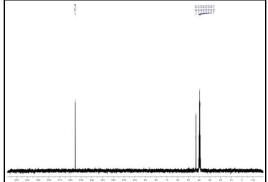

EBNIT nitration synthesis

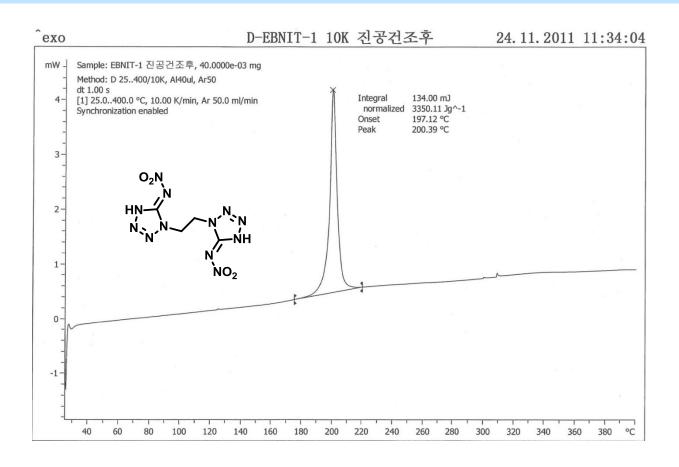



Am-EBNIT synthesis

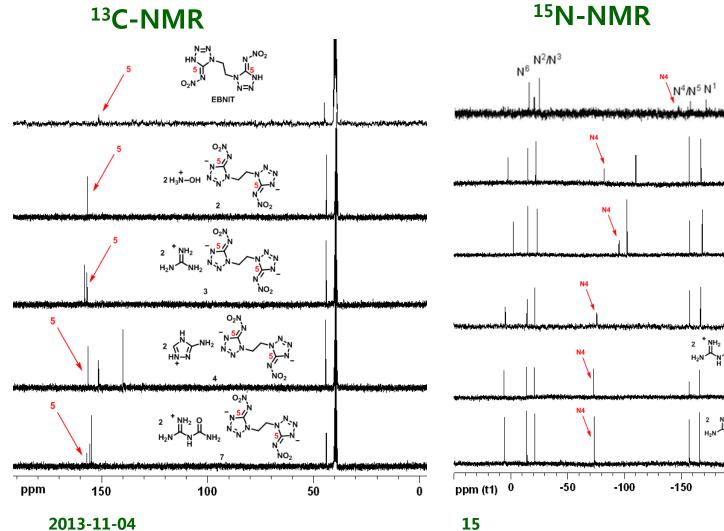



NMR of Synthesis materials



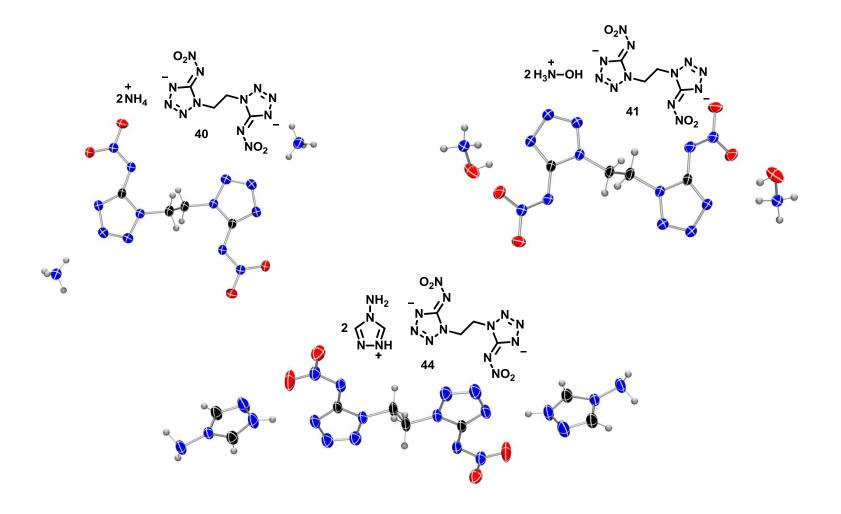


DSC of Synthesis materials


DSC curve of 1,2-bis(5-nitroiminotetrazol-1-yl)ethane

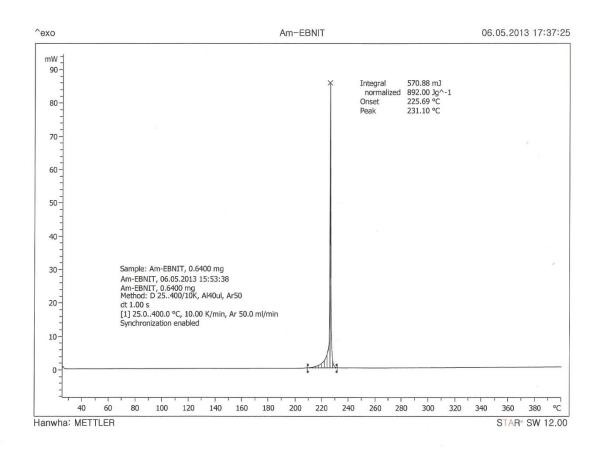
Salts synthesis of EBNIT

NMR analysis of EBNIT salts



-300

-200

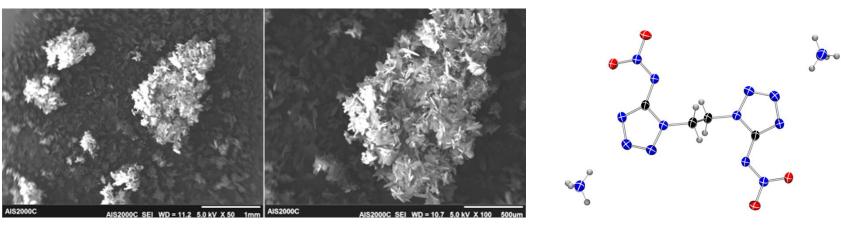

-250

Crystal structure of EBNIT salts

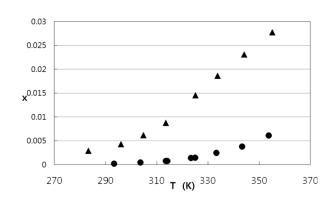
DSC of Synthesis materials Am-EBNIT

Properties of EBNIT salts

Comp ound	Nitrogen contents (%)	Decompo sition [°C]	Crystal Density [g cm ⁻³]	Heat of formation [kJ mol ⁻¹]	C-J pressure [GPa]	Detonation velocity [m s ⁻¹]	Impact Sensity [J]	Friction Sensity [N]
40	61.2	202	1.754	730	33.26	8979	4	180
41	55.7	210	1.807	849	38.16	9368	4	108
42	62.0	260	1.635	772	25.81	8213	40	360
43	61.4	223	1.676	1268	27.26	8311	10	120
44	61.4	204	1.661	1536	28.36	8455	6	168
45	63.4	244	1.747	1197	29.36	8537	6	216
46	56.9	240	1.857	890	33.50	8934	>40	>360
47	63.8	259	1.833	1362	31.34	8701	>40	>360


국 방과 학연구 4

Properties of Am-EBNIT


Nitrogen contents(%)	66.2	_
Heat of formation(kj/mol)	730	
Melting Point(°C)	202(decomposition)	
Crystal Density (g/cm ⁻³)	1.754	N11
Detonation velocity(m/sec)	8,979 (Explo-5 estimation)	N5
Detonation pressure(GPa)	33.26 (Explo-5 estimation)	N4 = = = = =
Impact Sensitiveness(J)	4.83 (RDX CL-1 7.38)	C6 N1
Friction Sensitiveness(N)	268.5 (RDX CL-1 142.92)	N3
		C2
	Q /	Ø [®]
		N8 O9
	<u> </u>	

Single crystal x-ray diffraction analysis

Recrystallization of Am-EBNIT

SEM of crude Am-EBNIT

Solubility in water of Am-EBNIT (▲)

SEM of recrystallized Am-EBNIT

Am-EBNIT Formulation

- > Prepare coated Am-EBNIT for pellet pressing and performance/sensitivity evaluations.
- ➤ Am-EBNIT was coated with 4% Hytemp(1%DOA) through a solvent slurry coating process. (Sigma mixer granulation)
- > 1kg batch size.
- > Am-EBNIT will be pressed.
- ➤ No optimization performed at this time. (Shape, particle size)

Sensitivity	Bear	Coated
Impact Sensitiveness(J)	4.83	6.14
Friction Sensitiveness(N)	268.5	>352.8

- **❖** Am-EBNIT has been High Nitrogen explosives
- Enhanced Synthesis method
- **❖** Further development needed to optimize particle shape and size
- Evaluate performance(VoD, pressure) and sensitivity (SSGT)
- **Evaluate Am-EBNIT for green energetic explosives**

